28 research outputs found

    Tight lower bounds on the number of bicliques in false-twin-free graphs

    Get PDF
    A \emph{biclique} is a maximal bipartite complete induced subgraph of GG. Bicliques have been studied in the last years motivated by the large number of applications. In particular, enumeration of the maximal bicliques has been of interest in data analysis. Associated with this issue, bounds on the maximum number of bicliques were given. In this paper we study bounds on the minimun number of bicliques of a graph. Since adding false-twin vertices to GG does not change the number of bicliques, we restrict to false-twin-free graphs. We give a tight lower bound on the minimum number bicliques for a subclass of {C4\{C_4,false-twin}\}-free graphs and for the class of {K3\{K_3,false-twin}\}-free graphs. Finally we discuss the problem for general graphs.Comment: 16 pages, 4 figue

    On star and biclique edge-colorings

    Get PDF
    A biclique of G is a maximal set of vertices that induces a complete bipartite subgraph Kp,q of G with at least one edge, and a star of a graph G is a maximal set of vertices that induces a complete bipartite graph K1,q. A biclique (resp. star) edge-coloring is a coloring of the edges of a graph with no monochromatic bicliques (resp. stars). We prove that the problem of determining whether a graph G has a biclique (resp. star) edgecoloring using two colors is NP-hard. Furthermore, we describe polynomial time algorithms for the problem in restricted classes: K3-free graphs, chordal bipartite graphs, powers of paths, and powers of cycles

    Covergence and divergence of the iterated biclique graph

    No full text
    A biclique of a graph G is a maximal induced complete bipartite subgraph of G. The biclique graph of G, denoted by KB(G), is the intersection graph of the bicliques of G. We say that a graph G diverges (or converges or is periodic) under an operator F whenever limk→∞ |V (F k (G))| = ∞ (limk→∞ F k (G) = F m(G) for some m, or F k (G) = F k+s(G) for some k and s ≥ 2, respectively). Given a graph G, the iterated biclique graph of G, denoted by KBk (G), is the graph obtained by applying the biclique operator k successive times to G. In this article, we study the iterated biclique graph of G. In particular, we classify the different behaviors of KBk (G) when the number of iterations k grows to infinity. That is, we prove that a graph either diverges or converges under the biclique operator. We give a forbidden structure characterization of convergent graphs, which yield a polynomial time algorithm to decide if a given graph diverges or converges. This is in sharp contrast with the situsation for the better known clique operator, where it is not even known if the corresponding problem is decidable.Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Montero, Leandro Pedro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore